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ABSTRACT

In a previous paper [1], a new merit function for determining the strength

performance of flawed composite laminates was presented. This previous analysis

was restricted to circular hole flaws that were large enough that failure could be

predicted using the laminate stress concentration factor. In this paper, the merit

function is expanded to include the flaw cases of an arbitrary size circular hole or

a center crack. Failure prediction for these cases is determined using the point

stress criterion. An example application of the merit function is included for a

wide range of graphite/epoxy laminates.

INTRODUCTION

In a previous paper [ 1], a new merit function was determined to examine the flaw

tolerance of composite laminates. In brief summary, it was determined that the

strength performance of a uniaxially loaded infinite width orthotropic sheet could

be optimized by maximizing the new merit function, v/E x. In this function, Ex

is the longitudinal extension modulus of the laminate and _t is the flaw tolerance

factor used to predict the reduction in strength of a flawed laminate. The values

of _ are < 1 and can be used to account for various flaw effects such as holes,

cracks, or impact damage. For circular hole flaws that were large enough that

failure could be predicted using the laminate stress concentration factor, it was

shown in [1] that _ was equal to l/k, where k is the orthotropic stress

concentration factor. Therefore, the merit function for the case of a large

circular hole is Ex/k. For a small circular hole or a center crack, since failure

cannot be predicted through the use of a simple stress concentration factor, the
same merit function cannot be used.

In this paper, the merit function is expanded to include the flaw cases of an

arbitrary size hole or a center crack. In order to predict the failure strength of

an infinite width plate in the presence of these flaws, the point stress criterion [3]

is used. After development of the merit function for each of the flaw cases,



examples are presented of the application of the merit function to a wide range of
graphite/epoxy laminates.

DESIGN OF A LAMINATE FOR IMPROVED FLAW TOLERANCE
IN THE PRESENCE OF A CIRCULAR HOLE

For an infinite width orthotropic sheet containing a hole of radius R, if a uniaxial

stress o is applied parallel to the y-axis (Figure 1), then the normal stress, Oy,

along the x-axis is approximated [5] by

O'y(X'0)=2{ 2q-/R)2 -t-3/g/4-(k-3)I 5/R/6 -7/R/81}
(1)

where k is the orthotropic stress concentration factor for

orthotropic plate [2]

:' - +---G12

an infinite width

(2)

The subscripts 1 and 2 denote the material principle axis.

The stress distribution given by (1) is actually a modification of the isotropic

stress distribution solution. For isotropic materials, the stress concentration

factor, k, equals 3 and expression (1) is exact. Since (1) is an approximation of

the stress distribution in front of a hole for anisotropic materials, the accuracy of

this expression was tested before use. The approximate stress distribution was

compared with the exact stress distribution solution from Savin [4]. The details

of this comparison are contained in Appendix A.

In order to predict failure in the presence of a circular hole, the point stress

failure criterion [3] has been used. Using the point stress criterion, failure of a

flawed material is assumed to occur when the normal stress, Oy, at a certain

distance, do, ahead of the flaw reaches the ultimate strength of the unflawed

laminate, CYo, or when

CTy(X,O) x:R+do =Go . (3)

do is a material parameter that needs to be experimentally determined for each

laminate under consideration.



Using the point stress criterion along with the stress distribution given by (1)
results in the flawed to unflawed strength ratio for an infinite width plate
containing a circular hole as

where

oo

O'N_ 2

O" ° {2+42 +3{4 -(k- 3)(5{6 - 748)}

(4)

R (5)
41-(R+do)

In (4), o N is the ultimate strength of the flawed laminate.

Using the methodology presented in [1], expression (4) is used to define the flaw

tolerance factor for the flaw case of a circular hole, _ct4, as

2

_cn= {2+{ 2 +344 _(k_3)(5{6 _ 748)} (6)

As R --> 0, then gtcH --> 1 which, as expected, implies that there will be no

reduction in strength. As R becomes large ( > 2.5 in), then Iffc/_/ --> 1/k. This is

shown in Figure 2 where the value gtcn*k is plotted against hole radius for three

values of the stress concentration factor. Since Vcu m> l/k, then gtcn*k --+ 1.

For a hole diameter larger than 5 in, each of the curves shown in Figure 2

approach this limit with the error only reaching a maximum of 11% for the k=5

curve. Since expression (6) returns the expected limits of the strength reduction,

it is used herein for a circular hole of any size.

For the flaw case of a circular hole, the merit function is

2E x
IltCH Ex

{2+42 +344 -(k-3)(546-748)}"

(7)

DESIGN OF A LAMINATE FOR IMPROVED FLAW TOLERANCE

IN THE PRESENCE OF A CENTER CRACK

For a center crack of length 2c in an infinite width orthotropic sheet under an

axial load cy (Figure 1), the exact anisotropic solution for the normal stress, Oy,

in front of the crack [2] is
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O'x

_y(X,O)-- 4X2 C2 (8)

Using the point stress criterion along with (8) results in the flawed to unflawed

strength ratio for the flaw case of a center crack [3] as

o_, _._fi_ {2 (9)
_o

where

c

_3 - (c+d0). (10)

Using (9), the flaw tolerance factor for the flaw case of a center crack, Illcc, can

be defined as

tllcc = _l - ¢ 2 . (11)

It should be noted from (l 1) that _cc is independent of laminate properties and

is only a function of the crack size and do. This implies that for a given crack

size and do, tllcc is a constant. Therefore, in the case of a center crack, the merit

function will be an optimum by maximizing the laminate property Ex.

The merit function for the flaw case of a center crack is

Example Application of Merit Function

For the example application of the merit function, the same baseline laminate

identified in Table 1 of reference [1] was used. To show the application of the

merit function, the baseline laminate was perturbed from the initial configuration

of [+45/02/+45/02/+45/0/9012s to a different configuration. The resulting

laminate properties and flaw tolerance factor were then determined for each of

the resulting laminates.

To do this, the baseline laminate was considered to consist of only three layers.

These three layers each have thickness t t and consist of all the 0 ° plies, all the
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1±45°1 plies, and all the 90 ° plies respectively. Using tt = tt / h, h = laminate

thickness, the relative values of the ft's were changed, and the angle of the ±45 °

ply was changed to some angle ± 0. The laminate stiffness properties were then

computed using equations (3.1) through (3.5) from [1] and the stiffness constants

defined in Appendix A of [I] also. The resulting flaw tolerance and merit

function for circular hole flaws was then determined using equations (2),(5), (6)

and (7). For center crack flaws, equations (10) and (12) were used.

For each of the flaw types, the dimensionless thickness i90 was left constant at

i90- .083, its value in the baseline laminate. The values of t0 and t0 were then

varied from 0 to .917 while holding the sum 50+i0=.917 a constant, and 0 was

varied from 20 ° to 60 °. The result these changes have on the laminate stiffness

Ex is shown in Figure 3. As expected, Ex increases with increasing 5o and

decreasing 0. The resulting changes in the individual merit functions are

discussed in the following sections. A value of do = .04 inches was used in all

calculations since this value has been shown to give good results for

graphite/epoxy laminates [3,6].

Circular Holes

Three hole sizes were used: R= .125 in., R=.5 in. and R= 2.5 in.. The R=2.5 in.

hole size is the same as that presented in [1]. The flaw tolerance factors for

0=+45 and variable 50 are shown in Figure 4, while the effect of varying 0 is

shown in Figures 5, 6 and 7. A major difference between the small and large

hole cases is the fact that the flaw tolerance factor increases with increasing 50 for

the small hole case (R=.125), while it decreases with increasing 50 for the larger

hole cases. In addition, decreasing 0 improves the flaw tolerance factor for

small holes, while worsening the flaw tolerance factor for larger holes. The

resulting values of the merit function are shown in Figures 8, 9 and 10.

For the R=.125 case (Figure 8), it can be seen that the optimum values of the

merit function will occur when 50 is increased to its maximum value of .917 and

when 0 is decreased to 20 °. Significant increases in the merit function compared

to the baseline laminate are possible.

For the R=.5 case (Figure 9), optimum values for the merit function also occur at

high values of 50 and low values of 0, but not at the extremes of these

parameters. Significant increases in the merit function over the baseline laminate

are still possible.
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The results for the R=2.5 case (Figure 10) are identical to those presented in [1].
Optimum values of the merit function now occur at various combinations of i0

and 0. Increases in the merit function are still possible, but are not as significant
as in the smaller hole cases.

Center Cracks

Three different crack sizes were examined: cracks with half lengths of c=.125

in., c=.5 in and c= 2.5 in.. Since the values of _t are a constant for any given

crack size, the optimum values of the merit function will occur when Ex is

maximized. The values of _t for each case are shown in Figure 4. The resulting

merit function values are shown in Figures 11, 12 and 13. As intuitively

expected, larger cracks reduce the strength more than smaller cracks. The merit

function for each crack size is optimum at high values of i0 and lower values of

0 since these values maximize Ex. In each case, significant increases in the merit

function compared to the baseline laminate are possible.

Discussion

The example application of the merit function uses the same graphite-epoxy

laminate as presented in reference [ 1]. In addition to large holes, small holes and

center cracks were studied in this example. From this example it was seen that:

l) For the flaw case of a small hole (R< .125 in), significant increases in the

merit function over the baseline laminate are possible. The large increases are

driven by the fact that increasing the longitudinal stiffness Ex also increases the

flaw tolerance factor for the small hole case. For the larger hole cases, _tc.

decreases with increasing Ex and the increases in the merit function are not as

significant.

2) For the case of a center crack, the merit function is optimized by" increasing

the longitudinal stiffness Ex of the laminate since the flaw tolerance factor is a

constant not dependent on laminate properties. Large cracks reduce the laminate

strength more than small cracks.

Increases in the merit function are again accompanied by significant decreases in

the shear stiffness Gxy and fluctuations in the major Poisson's ratio as detailed in

[1 ]. These changes may not be acceptable depending upon the application.



As detailed in Appendix A, values of the merit function at high values of i0 may
not be accurate for the circular hole flaws. This is due to the fact that the
accuracy of the approximate stress distribution (equation 1) is not very good for
highly fiber-dominated laminates. Since the merit function derived for center
cracks uses the exact stress distribution (equation 8), the values of the merit
function at high i0 values should still be accurate in the center crack examples.

It should also be noted that the results presented herein are for infinite width
plates only. The effects of finite width are beyond the scope of this paper, and
should be examined further.

CONCLUDING REMARKS

In this paper, the new merit function _E x developed in [1] was expanded to

include the flaw cases of arbitrary size circular holes and center cracks in an

infinite width orthotropic sheet. In reference [1], the merit function was limited

to holes large enough that failure could be predicted using the laminate stress

concentration factor. Since failure of a plate containing a small hole or a center

crack cannot be predicted through the use of a simple stress concentration factor,
a different merit function must be used.

In the present paper, the merit function for the flaw cases of an arbitrary size

circular hole or a center crack were derived using the point stress failure

criterion. An example of the use of the merit function was presented for each of

the flaw cases using a wide range of graphite/epoxy laminates.

From this example, it was shown that significant increases in the merit function

compared to a baseline laminate are possible. The increases are tempered by the

flaw size, with larger flaw sizes having smaller increases in the merit function.

For center crack flaws, increases in the merit function are governed by increases

in the laminate longitudinal stiffness Ex only and not the flaw tolerance factor.

This is due to the fact that the flaw tolerance factor for center cracks is a constant

not dependent on laminate properties. Accompanying the increases in the merit

function are corresponding decreases in the laminate shear stiffness and changes

in the major Poisson's ratio. These effects are fully detailed in reference [1].
The effect of finite width on the results contained herein needs to be further

examined.



REFERENCES

1 Mikulas, M.M. Jr. and R. Sumpter, "A New Merit Function for Evaluating

the Flaw Tolerance of Composite Laminates,"

2 Lekhnitski, S.G., "Theory of Elasticity of an Anisotropic Body," Translated

from the revised 1977 edition, Mir Publishers, Moscow, 1981.

3 Nuismer, R.J. and J.M. Whitney, "Uniaxial Failure of Composite Laminates

Containing Stress Concentrations," Fracture Mechanics of Composites,

ASTM STP 593, American Society for Testing and Materials, pp. 117-142,
1975.

4 Savin, G.N., "Stress Distribution Around Holes," NASA TT F-607,

Translation of "Raspredeleniye Napryazheniy Okolo Otverstiy," "Naukova

Dumka" Press, Kiev, 1968.

5 Konish, H.J. and J.M. Whitney, "Approximate Stresses in an Orthotropic Plate

Containing a Circular Hole," Journal of Composite Materials, Vol. 9, April

1975, pp. 157-166.

6 Rhodes, M.D., Mikulas, M.M. Jr., and P.E. McGowan, "Effect of Orthotropic

Properties and Panel Width on the Compression Strength of Graphite-

Epoxy Laminates with Holes," AIAA Journal, Vot. 22, No. 9, September

1984, pp.1283-1292.

7 Poe, C.C. Jr., "Fracture Toughness of Fibrous Composite Materials," NASA

Technical Paper 2370, November 1984.

8



(Y

Hole _ _ (Yy(x,O)

,_ Crack __-'_% X

G

Figure 1. Infinite width plate containing a hole or crack under a uniaxial load.
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Appendix A: Comparison of the Approximate and Exact Stress
Distribution Solutions for an Orthotropic Plate.

In order to test the accuracy of the approximate stress distribution solution shown

in equation (1) of this paper, the solution obtained using the approximate

expression was compared with the exact stress distribution obtained using the

complex variable mapping approach by G. Savin [4]. The normal stress
distribution in front of a circular hole in an infinite orthotropic plate under an

axial load c was computed for a broad range of laminates using both methods,
and the error between the solutions was determined.

The exact normal stress distribution, Cry, along the x-axis in front of a circular

cutout of radius R in an infinite width anisotropic plate under an axial load cr

(Figure 1) is given by

-$2(1-iS2) S,(1- iS2)
t.. (1A)

where

X
= --. (2A)

R

For an infinite width orthotropic plate, S1 and $2 are the roots of

) E,S 4 + - 2"0_ S 2 + -- = 0

E2
(3A)

where the subscripts 1 and 2 denote the material principle axes which are aligned

along x and y respectively. The roots of (3A) can fall into the following three

cases:

1) Sl=iBt, $2= ig2, ]_l,g2>0.

2) SI=S2=iB, B>0.

3) Sl=o_+ iB, $2=-o_+ ig, o_,B>0.

These roots are for the case of the principle axis parallel to the x-axis and the

loading normal to the x-axis. To rotate the principle axis by 90 °, the original

roots $1 and $2 should be replaced by l/S1 and 1/$2. For the three root cases the

following substitutions need to be made:
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Case 1) replace Bi and 132 by 1/131 and l/B2.

Case 2) replace 13by 1/13.

Case 3) replace _by ot/(o_2+132), 13by 13/(o_2+B2).

In order to compute the exact stress distribution, the software package

Mathematica was used. After first finding the roots of (3A) for the 16 different

laminates shown in Table 1A, the exact and approximate stress distributions were

computed and compared for each of the laminates. The material properties for
the laminates were obtained from references [6] and [7]. The stress distributions

calculated using both methods and the error between the two solutions are shown

in Figures 1A through 16A. In all of the figures, the dashed line represents the

approximate stress distribution and the solid line is the exact stress distribution.

The results of this investigation show that the approximate expression does

provide very accurate solutions except in a few laminate cases. These cases

include highly fiber-dominated laminates ( mostly 0 ° plies) or when the laminate

consists mostly of +45 ° plies. Yet even in +45 laminates (i.e. Poe 11, 15) the

error between the exact and approximate solutions is quite low (-6%). Since

these laminates are the extremes of laminate design, their use is fairly limited.

For the broader general class of laminates, the approximate stress distribution is

accurate enough and has been used in this paper.

The desire behind using the approximate expression given by equation (1) is that

it is a simple closed form solution for the stress distribution that can be easily

used without having to resort to specialized mathematical software such as

Mathematica. While obtaining the exact solutions has become much easier with

the aid of such packages, the exact solution technique is still very cumbersome

and the use of simpler formulas greatly simplifies the analysis.
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Laminate

Rhodes Orthotropic (Ref. 6)

[+45/02/+45/02/+45/0/9012s

Ex(GPa)
70.2

Rhodes Quasi-Isotropic 53.3

(Ref. 6)

Poe 1 (Ref. 7) 129

[0]gr
Poe 2 100

[02/90/0]s

Poe 3 103

[02/45/02/-45/02]s

Poe 4 70.5

[90/012s

Poe 5 76.4

[90/0/90/0/45/0/-45/0]s

Poe 6 75.3

[45/0/-45/0]s

Poe 8 50.0

[+45/0/+45/0]s

51.4Poe 9

[45/0/-45/90]s

Ey(GPa) Gxy (GPa) _xv
34.8 20.2 .48

53.3 20.2 .32

10.9 5.65 .312

40.7 5.65 .0836

17.9 12.7 .551

70.5 5.65 .0482

47.4 12.7 .214

23.3 19.7 .649

25.6 26.0 .698

51.4 19.7 .307

Poe 10 23.3 75.3 19.7 .201

[90/45/90/-45]s

Poe 11 19.6 19.6 33.7 .735

[-+4512s

Poe 12 109 8.32 4.82 .314

[0]gr
63.4 19.2 16.5 .654Poe 13

[45/0/-45/012s

43.1Poe 14

[45/0/-45/9012s

43.1 16.5 .303

Poe 15 16.7 16.7 28.2 .730

[+4512s

Table 1A: Laminates used to investigate the accuracy of the

approximate solution.
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Figure 1A: Comparison of Exact and Approximate Solutions for Rhodes Orthotropic Laminate.
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Figure 2A: Comparison of Exact and Approximate Solutions for Rhodes Quasi-Isotropic Laminate.
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Figure 3A: Comparison of Exact and Approximate Solutions for Poe Laminate 1.



5

(_y/(_

4

2

Exact and Approximate Stress Distributions

[0219010]s

Exact

Approximate

.... j .... j .... | .... _ .... • •

1.5 2 2.5 3 3.5

x/R

Error between Exact and Approximate Solutions

20

15

%Error

10

1.5 2 2.5 3 3.5

x/R

Figure 4A: Comparison of Exact and Approximate Solutions for Poe Laminate 2.
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Figure 5A: Comparison of Exact and Approximate Solutions for Poe Laminate 3.
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Figure 8A: Comparison of Exact and Approximate Solutions for Poe Laminate 6.
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Figure 9A: Comparison of Exact and Approximate Solutions for Poe Laminate 8.
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Figure 10A: Comparison of Exact and Approximate Solutions for Poe Laminate 9.
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Figure 12A: Comparison of Exact and Approximate Solutions for Poe Laminate 11.
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Figure 13A: Comparison of Exact and Approximate Solutions for Poe Laminate 12.
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Figure 14A: Comparison of Exact and Approximate Solutions for Poe Laminate 13.
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Figure 15A: Comparison of Exact and Approximate Solutions for Poe Laminate 14.
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Figure 16A: Comparison of Exact and Approximate Solutions for Poe Laminate 15.


